
Contrastive Learning for Single-Cell

Classification

A Thesis Presented in Partial Fulfillment of

the Honors Bachelor’s Degree

William Howard-Snyder

Approved:

Computer Science and Engineering

Under the supervision of Sheng Wang

University of Washington

June 2022



Contents

Abstract

Acknowledgments

1 Introduction 1

2 Background 3

2.1 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Single Cell Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Acquiring the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Data Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Single Cell Type Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Works 9

3.1 Deep Learning in Single Cell Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 ACTINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 scDAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Supervised Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Model 12

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Details of our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Experiments 15

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.4 Per Cell-Type Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.5 MLS Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Discussion 21

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References



List of Figures

1 General scRNA-seq workflow [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Base models with their contrastive components MLS-CC (left) and MLP-CC (right). Dashed

line indicates the backpropogation of loss. In both versions the base model is trained by

minimizing cross entropy on the training set. Then, the frozen base emebddings z are passed

into the contrastive component, which is trained by minimizing the contrastive loss of its

learned embeddings z̃. Last, the classification head f∗ϕ′ is retrained to classify those contrastive

embeddings. We call the classification head f∗ to denote that it can take a different form

than the original f (e.g., the input layer for the classification head after the MLS contrastive

component will often be a different size than that of the original classifier). . . . . . . . . . . 13

3 t-SNE visualization of unbalanced dataset on gene expression vectors. Broad cell types are

assigned a hue, and specific cell sutypes within that supertype are assigned different shades

of that color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Histogram of counts for each cell-type for the entire Tabula Microcebus dataset [2]. . . . . . . 16

5 Bar plot where height of each bar is computed as the base model performance with con-

trastive component minus base model performance without contrastive component. The two

contrastive formulations, MLP vs MLS, are shown in gray and orange, respectively. The per-

formance in macro F1 score is shown on top, and the performance in top-1 accuracy is shown

on the bottom. Negative height indicates the contrastive component hurts performance, while

positive height indicates it improves performance. Black capped bars indicate the standard

deviation of the difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 The difference in AUPRC for the MLS version of the base model and the vanilla base model

for each cell type. The x-axis shows the number of samples that particular cell type has in

the training dataset. A positive difference along the y-axis indicates that the MLS version

was better at classifying that cell type than its base. . . . . . . . . . . . . . . . . . . . . . . . 19

7 Logistic regression with MLS-CC embeddings for three cell types. Each point is the 2-

dimensional embedding of a cell in the Unbalanced test set. The red points are embeddings

of cells that are of that cell type, and the blue points are emebddings of cells that are not of

that cell type. All are shown projected onto the unit hypersphere, which is traced in gray. . . 20



List of Tables

1 Model performance in Simple (left), Data Scarce (middle), and Unbalanced settings in terms

of top-1 and top-3 classification accuracies (Top-1 and Top-3) and macro F1 score (F1) for each

model and CL type combination. LR stands for logistic regression, and the “+MLS/MLP”

indicates the model was augmented with its respective contrastive component. The best

performance for each metric in the given setting is bolded. . . . . . . . . . . . . . . . . . . . . 19



Abstract

Recent breakthroughs in single-cell RNA sequencing technologies have improved our understanding of

the molecular basis for cellular heterogeneity and dynamics. A crucial step in single-cell data analysis is

to identify which cells correspond to which cell types. Traditionally, cell classification has been performed

manually by experts, which is expensive and slow. In recent years, deep learning models have been proposed

to automatically classify individual cells. However, many of these models yield little to no performance gains

compared to simpler and more interpretable models such as logistic regression and support vector machines.

In this work, we present a model-agnostic component that uses contrastive learning to improve internal

model representations in deep neural network architectures for single-cell classification. We demonstrate

that our contrastive component improves classification accuracy and significantly improves AUPRC of logistic

regression, especially for rare cell types.



Acknowledgements

This thesis would not have been possible without the support of my friends, family, and mentors. First

I’d like to thank my research advisor Professor Sheng Wang for taking the time to meet with me one-on-one

and inspiring me to explore the field of computational biology.

I’d also like to thank Addie Chambers for the time she invested in meeting with me weekly, providing

technical advice on the specifics of my thesis, giving tips on how to write more clearly, and offering perspective

on what it takes to be a PhD student.

Thank you to the rest of the Wang Group for feedback on my senior thesis and allowing me to use your

valuable time to present my work.

Thank you to my mentor Neo Wu and the rest of my research cohort at Google Computer Science

Research Mentorship Program for providing valuable advice on how to conduct literature reviews, engage

with supervisors, and navigate application processes.

Thank you to my girlfriend Hannah Feller for your unwavering emotional support. I would not have been

able to complete this work without our frequent FaceTimes.

Thank you to Mom, Dad, and Peter for supporting me throughout my life and encouraging me to be

curious, persistent, and compassionate.



1 Introduction

The cell represents a fundamental building block of all life on Earth. In multi-cellular organisms, such

as humans, cells sharing the same “operating manual” DNA differentiate themselves to behave differently,

taking on different functions to perform different tasks and form the various tissues that make up the human

body. Deeper understanding at the cellular level has substantial biological and medical benefits, including

insights into disease, development, aging, and much more. In recent years, single-cell RNA sequencing

(scRNA-seq) has enabled this new and exciting line of research.

Accurate cell-type annotation for scRNA-seq data remains a great challenge in biology [3]. As the

resolution and size of single-cell datasets grow, increasingly sophisticated models and techniques are required

to mine biologically meaningful information from these data. This motivates the use of deep neural networks

(DNNs), which are capable of modeling arbitrarily complex relationships between input features and output

variables, and excel in settings where there are huge datasets of structured high dimensional data. Many

DNN architectures have been proposed for single-cell annotation [4, 5, 6]; however, these models yield small

performance gains compared to simpler and more interpretable models such as logistic regression and support

vector machines [7].

Contrastive parallel, a parallel line of work, is a framework for representation learning, has seen lots

of recent success in fields like Natural Language Processing (NLP) and Computer Vision (CV) [8, 9, 10,

11, 12, 13, 14]. These models learn high-quality, low-dimensional representations of text and image data

that are robust to noise and have been shown to improve performance in downstream tasks such as image

classification [8, 11, 9], sentiment analysis [14, 15, 16], and information retrieval [17, 18] in both supervised

and unsupervised settings.

Inspired by this success, we propose a model-agnostic component that uses contrastive learning to improve

internal model representations in DNN architectures for single-cell classification. In this work, our main

contributions are:

• Model-agnostic contrastive component: We define a novel component that can be included in

DNN single-cell classification models. This component is simple and easy to integrate into the inference

and training stages of pre-existing classifiers.

• Benchmark evaluation: We perform experiments on the Tabular Microcebus [2] scRNA-seq dataset

using three base models: ACTINN [4], scDAE [5], and logistic regression. We find that our contrastive

component improves classification accuracy and significantly improves AUPRC of logistic regression,

especially for rare cell types.

1



The rest of this work is structured as follows: In Section 2 we describe relevant background for our prob-

lem, such as single-cell data and representation learning. In Section 3 we describe related works, including

baseline models for single-cell classification. In Section 4 we define our problem setting and model. In Section

5 we describe the datasets and experimental procedure we used to evaluate our model, as well as the results.

Finally, in Section 6, we wrap up the work by summarizing the results, and discussing some potential lines

for future work.

2



2 Background

This thesis covers topics in machine learning and biology. In this section I will provide a summary of

the relevant information for this work, including Contrastive Learning, Single Cell Data, and Single Cell

Classification.

2.1 Representation Learning

Representation learning consists of a set of techniques that enable a system to automatically discover data

features that improve performance on downstream tasks (e.g., information retrieval, classification, visualiza-

tion, etc.). Usually, these representations are in the form of a vector of real numbers that is lower-dimensional

than the original datum, and that captures the semantic similarity between individual data points. There

are many approaches to representation learning. Some examples of representation learning are unsupervised,

such as PCA, t-SNE [19], and UMAP [20]. These methods learn features by modelling the structure present

in the raw data. Other methods are supervised, such as those in metric learning [21]. These methods utilize

labels to learn representations that reflect information present in the labels as well as the data itself (e.g.,

datapoints with the same label have similar representations). Some methods, such as self-supervised repre-

sentation learning methods, are a hybrid of the two. These methods do not use curated labels, rather they

treat part of the training data itself as a label and learn representations as if they were supervised. One

example is BERT [14], which learns text representations by predicting removed words from a sentence.

Contrastive Learning is a discriminative form of representation learning that has seen a lot of recent

success in supervised and semi-supervised representation learning for image and text data [8, 9, 11, 13]. There

are many formulations of contrastive learning, but the goal remains the same in each: Learn an embedding

function such that objects that represent the same thing are mapped together, and objects that represent

different things are mapped far apart. The key task is to define what it means for two objects to represent

the same/different things.

In self-supervised representation learning, models define transformations that they want their represen-

tations to be invariant to, such as crop and blur for images [9, 12]. An object xi is defined as the same thing

as its transformed version x̃i, while a different object xj (e.g., a different image), is considered a different

thing. We call (xi, x̃i) a positive pair, and (xi,xj) a negative pair. The set of all objects that form a positive

pair with xi is P(i), and similarly, the set of all objects that form a negative pair with xi is N (i). Often,

N (i) will be much larger than P(i). In self-supervised contrastive learning, there is no way to determine

whether two objects actually represent the same concept for downstream tasks of interest. Since there are

no labels, the only available knowledge is whether one object is a transformation of another. For example,

3



there may be two distinct pictures of the same dog in a dataset; however, those images will be treated as a

negative pair. Downstream performance on classification tasks can suffer because the representations for a

single class may require complicated decision boundaries to separate in the learned representation space.

Supervised contrastive learning attempts to overcome this problem by using labels to define positive and

negative pairs [11]. Typically, two objects xi and xj are a positive pair in this framework if they share a

label, and otherwise they’re a negative pair. Defining positive and negative pairs in this way forces the the

learned embedding to group representations by label, making the representations easier to separate by class.

Their are many formulations of contrastive learning optimization objectives, but they all follow a similar

pattern. Formally, given a set of datapoints D = {xi}ni=1, learn f : Rm → Rd, d << m by minimizing the

contrastive loss

LCL ∝
∑
x∈D

∑
x+∈P(x)

∑
x−∈N (x)

dist(f(x), f(x+))− dist(f(x), f(x−)), (1)

where P(x) and N (x) are the positive and negative set for an anchor point x, respectively, and dist(·, ·) is

function that measures the distance between its inputs (e.g., cosine distance or euclidean distance). The use

of triples (i.e., anchor point, positive example, and negative example) in this loss is reminiscent of triplet

loss, which was used for face recognition in [22]. However, more recent work compares many positive and

negative examples at a time [10, 23]. We will discuss one such method in depth in Section 3.2.

2.2 Single Cell Data

Recent technological breakthroughs in single-cell sequencing allow an unprecedented amount of single-cell

data to be generated. These data have the potential to provide biological insights such as the discovery

of novel cell subtypes and exploration the cellular basis for disease [24]. However, the size, sparsity, and

noisiness of gene expression data make it challenging to focus on the underlying biological signal. Thus,

the development of efficient methods for mining these data plays an important role in progressing modern

biomedical research. In this section I will describe how noise and sparsity enter single-cell data.

2.2.1 Acquiring the Data

Each cell contains millions of genes, which carry instructions for making proteins that can effect cellular

function. Only a small portion of these genes are expressed, and the degree to which they’re expressed

varies across cells and over time. Measuring the expression of genes at single-cell resolution is critical for

understanding the heterogeneity of cells and offers exciting biological and medical insights [25, 26]. Single-

cell RNA sequencing (scRNA-seq) measures the gene expression of individual cells. The first method was

4



Figure 1: General scRNA-seq workflow [1]

introduced in 2009 [27], but it wasn’t until 4 years later that a new more cost-efficient technique was

developed, making scRNA-seq more broadly accessible.

There are a variety of methods for generating single-cell data from a biological sample, but four key steps

appear in each [28].

1. The first is disassociation. In this step, the biological tissue sample is digested and broken down so

that individual cells can be extracted.

2. Second is isolation. This step differs depending on the scRNA-seq method. Plate-based methods

isolate cells into wells on a plate, while droplet-based methods suspend cells in microfluidic droplets.

Regardless of the method, errors can occur when multiple cells are captured together (referred to as a

doublet), or no viable cells are captured. When exactly one cell is captured, that is the ideal case.

3. Third is library construction, which refers to gathering the mRNA for each individual cell. This

involves breaking down the membrane of captured cells, reverse transcribing their mRNA to cDNA,

and amplifying the mRNA. Additionally, each cDNA library is labelled with a unique barcode that

demarcates individual cells. However, note that the mRNA of two cells might be given the same

barcode when a doublet occurs.

4. Fourth, these libraries are pooled together and sequenced, which produces a string of nucleotides for

each mRNA molecule. These strings are grouped by their barcodes and subjected to quality control

measures (e.g., removal of low-quality cells).

The resulting dataset for a tissue sample is a matrix of counts that has dimensions barcodes by number-

of transcripts. We say barcodes rather than number of cells because in the isolation step a barcode may

5



mistakenly be tagged to multiple cells or not be be tagged to any cells.

2.2.2 Data Details

The full scRNA-seq workflow produces a gene expression matrix X ∈ Rn×m, for n the number of barcodes

and m the number of genes, where each row xi ∈ Rm is a gene expression profile. For our purposes, we

can think of a gene expression profile as a vector of features that represent an individual cell, where each

coordinate of that vector contains the measurement of a single gene’s activity for that particular cell. This

provides a snapshot of global cellular function at the time the cell was sequenced. Understanding the data

as capturing a biologically-relevant signal is similar to how data are viewed in fields like NLP and CV.

However, what makes single-cell data uniquely challenging, compared to image or text data, are their noise

and sparsity.

Single-cell data are notoriously noisy. One source of noise in single cell data is batch effects. As described

in Section 2.2.1, gene expression profiles are generated through complex wet lab procedures. Batch effects

occur when the transcriptome measurements for a batch of data is impacted by environmental conditions of

the experiment specific to the experiment. Each experiment uses different machines, different procedures, and

different technicians, resulting in significant variation in transcriptome measurement across experiments that

is irrelevant to the variable of interest (e.g., cell type) and can confound downstream analysis. Another source

of noise comes from the inclusion of low-quality cells. This can happen in at least two ways. Multiple cells

can be captured together and treated as a single cell, or captured cells may include those whose membrane

broke prematurely. For example, if a barcode has few genes and a high mitochondrial count, then it is likely

the profile of a cell whose cytoplasmic mRNA has leaked out through a broken membrane [28]. In either case,

low-quality cells are typically omitted from the scRNA-seq dataset for downstream application via outlier

detection, but sometimes they are mistaken for healthy single cells and make it into the final gene expression

matrix. When this occurs, those gene expression profiles are nonsensical and can hinder the extraction of

biological insight from the data.

Sparsity is another challenge for scRNA-seq data. A vector is sparse when many of its coordinates are

zero. In our setting, this corresponds to many gene expression values being measured as zero. There is a lot

of biologically-true absence of expression, but there are also many artificial zeros where a gene is expressed,

but not detected due to technical limitations (e.g., platform or sequencing depth) [3]. These zeros are called

dropout events. Sparsity in general is challenging to model, and often necessitates the use of specialized

algorithms and techniques. These challenges are amplified by the presence of dropout, which can severely

hinder downstream applications.

6



2.2.3 Takeaways

The details of acquiring gene expression profiles are extremely complex, and we present only a small piece

of that complexity above. For the purposes of this thesis, there are two key points to remember:

• Gene expression profiles contains signal for cellular function, including cell type. This is analogous to

how a pixel vector of an image contains signal for the objects within that image.

• Gene expression profiles are incredibly noisy and sparse due to technological limitations of acquiring

single-cell data. These properties present unique challenges for handling this data.

2.3 Single Cell Type Classification

One step in many scRNA-seq analysis pipelines is to identify which cell populations are present in an

experiment. This problem is known as single cell classification (or annotation).

Traditional methods for cell-type annotation involve dimensionality reduction of gene expression profiles

using techniques such as PCA, t-SNE [19], or UMAP [20]. The resulting representations are clustered using

techniques like hierarchical clustering or k-means clustering. Then, each cluster is manually annotated by a

biologist using a reference database of marker genes. While these methods have been very useful for extending

our knowledge of cell populations, the manual annotation step is slow and expensive, as it requires experts

to inspect individual marker genes. Moreover, manual annotations are less reproducible, as the annotations

are not typically based on standardized vocabularies of cell types. Another drawback to these techniques

is that they rely heavily on the availability of high-quality marker genes for each cell type. A cell’s marker

genes are a small set of genes whose expression determine what the type of the cell is. Discovering marker

genes for each cell is itself a significant challenge in biology, and so developing methods that do not rely on

curated high quality marker genes is preferred [5].

These challenges with traditional annotation techniques have motivated the use of supervised machine

learning, which automatically learns relationships between features and labels. Viewed in this way, single cell

annotation is just an instance of multi-class classification. Formally, we are given a gene expression matrix

X ∈ Rn×m and a vector of each cell’s cell type Y. We want to learn a mapping f from gene expression

vectors to cell types f : X → Y.

A standard pipeline for these methods is to first perform traditional unsupervised feature selection, and

then apply simple statistical classifiers. For example, scPred uses PCA to reduce the dimension of the

gene expression vectors, and then learns an SVM with radial basis kernel on top of those representations

[29]. CaSTLe uses similar data preprocessing steps followed by XGBoost [30], which is a classifier based on

7



gradient boosted decision trees [31].

These conventional techniques leverage hand-engineered feature extraction methods to transform the

gene expression vectors into a representation that is more suitable for statistical methods. Recently, more

sophisticated models are being explored that learn their own feature extractors. In particular, there has

been a recent push for DNN models, which can learn arbitrarily complex relationships between the data and

label space. Examples include ACTINN [4] and scDAE [5], which are described in Section 3.1.

8



3 Related Works

3.1 Deep Learning in Single Cell Classification

Deep Learning models are capable of learning the arbitrarily complex relationships between gene expression

and cell type. As such, DNNs are excellent candidates for single-cell classification. In the following section,

I describe two DNN models that are used for single-cell classification.

3.1.1 ACTINN

Automated Cell Type Identification using Neural Networks (ACTINN) [4] implements a multi-layer percep-

tron for single-cell classification. The model uses four layers consisting of a linear function followed by a

non-linear activation, defined as

li(x) = σ
(
W[i]x+ b[i]

)
ŷ = l4 ◦ l3 ◦ l2 ◦ l1(x),

where the non-linear activation function σ(x) is the element-wise Rectified Linear Unit (ReLU) function for

the first three layers, and softmax for the final layer, defined as,

ReLU(x) = [max(xi, 0)]i softmax(z) =

[
exp(zi)∑n
j=1 exp(zj)

]
i

.

This model is trained to minimize the L2-regularized cross entropy loss LACTINN = LCE + λLreg where

LCE = −
n∑
i=1

c∑
j=1

yj · log(ŷj) + (1− yj) · log(1− ŷj), (2)

and Lreg =
∑
θ∈Θ ||θ||2. Here, Θ is the set of model parameters, which are W1,2,3,4 and b1,2,3,4.

ACTINN is a simple model that has relatively few parameters compared to other DNNs. When classifying

gene expression profiles with 25,000 genes to 50 cell types the model weights contain 25, 000× 100 + 100×

50 + 50 × 25 + 25 × 50 ≈ 2.5 million parameters. This means that it can be trained quickly and requires

little memory to store. However, the simplicity of this model comes at a cost. ACTINN’s performance

suffers when trying to distinguish many cell subtypes [4]. This is undesirable, especially as new scRNA-seq

technologies are growing more powerful and larger datasets with more cell subtypes are becoming available.

9



3.1.2 scDAE

scDAE is another DNN-based model that performs single-cell subtype classification [5]. The model consists

of a denoising autoencoder (DAE), which extracts gene expression profile representations that are robust to

noise, and a multilayer perceptron that classifies those representations.

The DAE is comprised of an encoder enc(·) : Rm → R125 and a symmetrical decoder dec(·) : R125 → Rd,

where m is the dimension of gene expression vectors (usually m ≈ 104). The encoder maps gene expression

vectors to representations, and the decoder tries to reconstruct the original vector from that representation.

The DAE is trained to minimize the reconstruction error on the training gene expression matrix X with

added Gaussian noise

LDAE(X) =
1

2n

n∑
i=1

||xi − dec(enc(xi + ei))| |22, (3)

where ei ∼ N (0, 1). The purpose of corrupting the input is to make the encoder’s representations robust to

noise in the data since the model is incentivized to minimize the difference between representations for noisy

versions of the same expression vector.

Once the representations are learned, they are fixed and passed to the classification component f , which

is a multilayer perceptron that was trained to minimize cross entropy loss in Equation (2) on top of the

representations generated by the encoder. Inference uses both the DAE and the classification component

and runs as

ŷ = argmaxjf(enc(x))j .

The training of the model is split into three stages. First, the DAE was trained to minimize reconstruction

error LDAE . Second, with the parameters of enc frozen, the classifier was trained to minimize the cross

entropy LCE . Last, both components were trained jointly by summing the individual loss terms.

scDAE achieves higher accuracy than ACTINN, especially when classifying cell subtypes. The authors

argue that this success is due to scDAE’s representation learning component, which makes the model robust to

corruption of the gene expression values. Due to the complexities in generating gene expression profiles, this

sort of noise is common in single-cell data. One potential downside to scDAE’s approach to representation

learning is that it could confuse the model and cause representation collapse. For instance, if individual

cells from two different classes are similar enough, it’s possible that the perturbation of the input will make

the representations indistinguishable. Then, the classifier would have a difficult time discerning which cells

belong to which class.

10



3.2 Supervised Contrastive Learning

As discussed in Section 2.1, contrastive learning is a form of representation learning that has seen a lot of

recent success in learning image representations [8, 13, 9, 11]. Inspired by this success, we employ contrastive

learning as well.

Khosla et. al introduce SupCon [11], a framework for training supervised models with contrastive loss.

In this framework, model training consists of two stages. First, an embedding function g is trained using

contrastive loss. Then, the embedding function parameters are frozen, and a small classification head is

trained on top of the learned representations.

The authors argue that models trained with this contrastive objective are capable of utilizing label

information more effectively than cross entropy alternatives. Their experiments confirm the benefits of

SupCon for image data by showing that their model has higher accuracy on ImageNet-1k, is more robust

to noise (e.g., blur and contrast) using the ImageNet-C benchmark, and is less sensitive to hyperparameter

changes. The model is trained with a version of InfoNCE loss [10], which is defined as

LSupCon
CL =

n∑
i=1

−1

|P(i)|
∑
p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
, (4)

where zi = g(xi), P(i) = {p ∈ A(i) : yp = yi} is the set of indices of the positive pairs of xi within

our minibatch, A(i) = {a ∈ [n] : a ̸= i} is the set of all indices in our minibatch other than that of our

current anchor point xi, and τ is a temperature parameter that controls the degree of separation for learned

representations.

Although the specifics differ from Equation (1), the main idea is the same. The loss penalizes positive

pairs that are far apart (e.g., zi · zp in the numerator will be small), and penalizes negative pairs that are

close together (e.g., zi · zn will be large in the denominator).

Our approach is inspired by SupCon, and we use LSupCon
CL in the contrastive learning stage of our model.

However, we use a different type of classification head. We also do not use random transformations, whereas

they augment their image dataset with random transformations (e.g., crop and blur). Finally, we apply our

model to single-cell classification rather than to image data.

11



4 Model

In this section we first present the problem setting, which involves augmenting pretrained models in a way

that improves their internal representations. Then, we propose a novel solution to that problem using

contrastive learning.

4.1 Problem Statement

We are given a gene expression matrix X ∈ Rn×m accompanied by each cell’s cell-type label Y ∈ Rn.

Additionally, we have a pretrained backbone model for classifying single cell data ŷ = fϕ(gθ(x)). We refer to

gθ as the encoder and to fϕ as the classification head, and they are parameterized by θ and ϕ, respectively.

Typically, fϕ will be relatively simple (e.g., a one- or two-layer neural network), while gθ is more complex

(e.g., a multi-layer VAE or GNN). We also note that gθ and fϕ can consist of components that are trained

jointly or separately.

Our goal is to introduce a simple component hψ that improves the representations that are provided

to the classification head. Ideally, these representations will enable the augmented model fϕ′(hψ(gθ(x)) to

achieve higher accuracy, be more robust to noise, and be less sensitive to hyperparameter selection than its

base model fϕ(gθ(x)).

4.2 Details of our Approach

Let z = gθ(x) be the base model’s embedding for single cell x. We propose a simple component hψ that

uses contrastive learning to improve model representations z and boost performance on downstream tasks.

First, we define gθ and fϕ of the base model such that inference runs as

Pr(Y = y | X = x) = fϕ(gθ(x)).

For example, if the base model is a fully-connected multi-layer perceptron with three hidden layers (and four

total layers), then we can take the first three layers as the encoder, and the last layer as the classification

head. Then, the augmented model can be trained by following the procedure below.

1. Train the model fϕ(gθ(x)) according to its given training procedure.

2. Aquire the pretrained embeddings z = gθ(x) for each cell in the gene expression matrix.

3. Train hψ(z) by minimizing LCL, as given in Equation (5) and Equation (6) on the training dataset.

4. Freeze the parameters ψ, and train fϕ′(hψ(z)) using the original training procedure.

12



Cross 
Entropy

Contrastive 
Loss

Cross 
Entropy

Cross 
Entropy

Contrastive 
Loss

Cross 
Entropy

1

3

2

Cross 
Entropy

Cross 
Entropy

1

2 3

Base Encoder

Base Classifier

MLS Encoder

MLP Encoder

Figure 2: Base models with their contrastive components MLS-CC (left) and MLP-CC (right). Dashed line
indicates the backpropogation of loss. In both versions the base model is trained by minimizing cross entropy
on the training set. Then, the frozen base emebddings z are passed into the contrastive component, which
is trained by minimizing the contrastive loss of its learned embeddings z̃. Last, the classification head f∗ϕ′

is retrained to classify those contrastive embeddings. We call the classification head f∗ to denote that it
can take a different form than the original f (e.g., the input layer for the classification head after the MLS
contrastive component will often be a different size than that of the original classifier).

Note that we can skip step 1 if we have access to a pretrained model.

We tried two different model formulations for the contrastive component h. The first model is the

multi-layer-perceptron contrastive component (MLP-CC), which is shown in Figure 2 (as applied to the

ACTINN base model [4]). We implemented MLP-CC using a fully-connected neurual network with two

layers separated by ReLU non-linearities. We will refer to this component as hMLP
ψ : Rd → Rd. For a given

expression vector x, recall that its base embedding is denoted z = g(x). Let the MLP-CC embedding be

defined as z̃ = hMLP
ψ (z).

To train MLP-CC, we applied the InfoNCE loss to the unit-hypersphere-normalized contrastive embed-

dings, which is defined as

LMLP
CL =

n∑
i=1

−1

|P(i)|
∑
p∈P(i)

log
exp(z̃i · z̃p/τ)∑

a∈A(i) exp(z̃i · z̃a/τ)
, (5)

where z̃i =
hMLP
ψ (zi)

||hMLP
ψ (zi)||2

, A(i) = {a ∈ [n] : a ̸= i} is the set of all indices in our minibatch other than that of

our current anchor cell i, P(i) = {p ∈ A(i) : yp = yi} is the set of indices that have the same label as cell i,

and τ is a temperature parameter that controls the degree of separation for learned representations.

13



The second model is the multi-latent-space contrastive component (MLS-CC), which is shown in Figure

2 (as applied to the ACTINN base model [4]). We refer to this embedding function as hMLS
ψ : Rd → Rc×2,

where c is the number of cell types. For a given base embedding z, a two dimensional embedding is created

for each class hk(z) = z̃(k) ∈ R2. These representations are normalized to the unit hypersphere such that

||z̃(k)||2 = 1. Then these representations are concatenated together into a c× 2-dimensional representation.

In other words,

h
(MLS)
ψ (z) =



h1(z) / ||h1(z)||2
...

hk(z) / ||hk(z)||2
...

hc(z) / ||hc(z)||2


=



z̃(1)

...

z̃(k)

...

z̃(c)


= z̃.

We refer to the range of the learned function hk as cell k’s latent space. The goal for each hk is to embed

cells into a latent space such that embeddings labelled with cell type k are well separated from those of the

cells from all other cell types. This representation learning scheme forces the model to devote a fixed number

of dimensions to learning embeddings for each cell type, including those that are under-represented in the

training set. Representing individual cells in this way will hopefully (i) enable the classification head to make

more accurate predictions on rare cell types and (ii) enable the classification head to leverage underlying

relationships between cell types for better overall predictions.

We use a slightly modified version of InfoNCE for our contrastive loss LMLS
CL , which is defined as

LMLS
CL =

c∑
k=1

n∑
i=1

−1

|P(i)|
∑
p∈P(i)

log
exp(z̃

(k)
i · z̃(k)p /τ)∑

a∈A(i) exp(z̃
(k)
i · z̃(k)a /τ)

, (6)

where z̃
(k)
i = hk(zi), and A(i), P (i), and τ are defined the same way as in Equation (5).

14



5 Experiments

In this section we describe the datasets and experiments used to evaluate our model. We also present our

results.

5.1 Datasets

In our experiments, we analyze the dataset of Tabula Microcebus Lemur 3 (10×) [2], which is publicly

available on figshare. This dataset contains over 90,000 individual cell gene expression vectors and consists

of 97 cell types. From this dataset we created three data settings.

1. Simple, which consists of the 25-most-common cell types from Tabula Microcebus and randomly down-

samples the cells in each type until there are approximately 500 cells per type in the train dataset.

2. Data Scarce, which consists of the 50-most-common cell types and randomly downsamples the cells in

each type until there are approximately 60 cells per type in the train dataset.

3. Unbalanced, which consists of the 80-most-common cell types, with no downsampling. The training

data set for this data setting contains some cell types with more than 5,000 samples, and some cell

types with fewer than 50 samples. As shown in Figure 4, there is a large imbalance in the number of

cells per cell types in the full Tabula Microcebus [2] dataset.

For each data setting we used the raw gene expression counts and used the preprocessing techniques that

the base model used. For all base models this involved removing all genes whose expression was zero in

every cell. For ACTINN [4] and logistic regression, we also normalized gene expressions by the total sum

for that gene in the expression matrix, multiplied by 10,000, and took the log-plus-1 of the resulting values.

For scDAE [5], we divided each gene expression by the largest value in the gene expression matrix and took

the log-plus-1 of the resulting values.

5.2 Experimental Procedure

In our experiments, we applied our contrastive component to three base models: ACTINN [4], scDAE [5],

and logistic regression. For each model we defined an encoder component and a classification head as

1. ACTINN: The encoder consisted of the first two fully-connected layers, while the classification head

consisted of the last two layers, followed by a softmax;

2. scDAE: The encoder consisted of the Denoising Auto Encoder, while the classification head consisted

of two fully-connected layers, followed by a softmax;

15

https://figshare.com/projects/Tabula_Microcebus/112227


Neural Cell
Leukocyte
Kidney Cell
Epithelial Cell
Other

Figure 3: t-SNE visualization of unbalanced
dataset on gene expression vectors. Broad cell
types are assigned a hue, and specific cell su-
types within that supertype are assigned different
shades of that color.

0 20 40 60 80 100
Cell Type

101

102

103

104

Ce
ll 

Co
un

t

Figure 4: Histogram of counts for each cell-type
for the entire Tabula Microcebus dataset [2].

3. Logistic Regression: The encoder consisted of the identity function, while the classification head con-

sisted of a single fully-connected layer followed by a softmax. Note that this means the contrastive

component was applied directly to the gene expression vectors in the data space.

For each combination of model (logistic regression, ACTINN, and scDAE), CL type (Base, MLS, and

MLP), and setting (Simple, Data Scarce, and Unbalanced) we created a training dataset, validation dataset,

and test dataset that consisted of 80%, 10%, and 10%, of the data, respectively. We then trained the

appropriate model on the train set using the given base models preprocessing scheme, and selected the best

model during training according to performance on the validation set. Then, each model was evaluated on

the test set.

This procedure was repeated 5 times, using different random seeds for each trial, which produced a

different train, test, and validation set each time, as well as different model initializations. Performance

metrics were computed by averaging the metrics across the five trials for each model, CL type, and setting

triplet.

5.3 Overall Results

In Figure 5, we present bar plots comparing the performance between base models with and without a

contrastive component. The height of each bar is the difference in performance (e.g., macro F1 score or top-

1 accuracy) between the given base model with a contrastive component and the given base model without

16



Logistic Regression scDAE ACTINN
Simple

0.02

0.01

0.00

0.01

0.02
M

ac
ro

 F
1 

Sc
or

e 
Di

ffe
re

nc
e

Logistic Regression scDAE ACTINN
Data Scarce

0.3

0.2

0.1

0.0

0.1

Logistic Regression scDAE ACTINN
Unbalanced

0.04

0.03

0.02

0.01

0.00

0.01

0.02 MLP
MLS

Logistic Regression scDAE ACTINN
Simple

0.02

0.01

0.00

0.01

0.02

To
p-

1 
Ac

cu
ra

cy
 D

iff
er

en
ce

Logistic Regression scDAE ACTINN
Data Scarce

0.3

0.2

0.1

0.0

0.1

Logistic Regression scDAE ACTINN
Unbalanced

0.008

0.006

0.004

0.002

0.000

0.002

0.004 MLP
MLS

Figure 5: Bar plot where height of each bar is computed as the base model performance with contrastive
component minus base model performance without contrastive component. The two contrastive formulations,
MLP vs MLS, are shown in gray and orange, respectively. The performance in macro F1 score is shown on
top, and the performance in top-1 accuracy is shown on the bottom. Negative height indicates the contrastive
component hurts performance, while positive height indicates it improves performance. Black capped bars
indicate the standard deviation of the difference.

a contrastive component. For example, the height of the bar with the MLS-CC component would be

yMLS
bar = performance(fϕ′(hMLS

ψ (gθ(x))))− performance(fϕ(gθ(x))).

From these plots, we can see that MLP-CC boosts top-1 accuracy and macro F1 score for logistic regres-

sion in the Simple setting, while it hurts performance in six model-setting combinations. In the Data Scarce

setting, MLP-CC has little effect when applied to scDAE and logistic regression. We also show that MLS-CC

boosts top-1 accuracy and macro F1 score for four model-setting combinations, hurts them in three, and

has little effect in one. This indicates that both MLP-CC and MLS-CC are not as model-agnostic as we

had hoped. However, MLS-CC does appear to be a stronger model than MLP-CC, and improves logistic

regression classification accuracy and macro f1 score across all settings.

In Table 1, we show the top-1 accuracy, top-3 accuracy, and macro F1 score for each combination of

17



models in all three settings. In each of the settings, logistic regression with MLS-CC (LR+MLS) outperforms

all other models across all metrics except for top-3 accuracy in the Unbalanced setting.

5.4 Per Cell-Type Results

We also measured the area under the receiver operating characteristic (AUROC) and the area under the

precision recall curve (AURPC) for each individual cell type in each trial in the Unbalanced setting. With 5

trials and 80 cell types, this produced 400 performance samples for each model. We computed a paired t-test

on these samples between each base model and its MLS-augmented version. For ACTINN [4], we found that

the MLS component decreased average AUROC and AUPRC performance, with a p-values of 5.51 × 10−5

and 1.31×10−7, respectively. For scDAE [5], we found that the MLS component decreased average AUROC

and AUPRC performance, with a p-values of 2.46 × 10−5 and 0.0454, respectively. For logistic regression,

however, the MLS component increased average AUPRC performance, with a p-value of 0.0115; the increase

in AUROC was not statistically significant.

In Figure 6, we examine more closely how cell-type classification performance is impacted by number of

cells of that type in the training set. Each data point is the difference in AUPRC for a cell-type between the

base model and its MLS-augmented version. We plot the performance against the number of samples in the

training dataset. Note that for cell types that have high representation in the training dataset (e.g., > 105

samples) there is very little difference in performance. However, for cell types with lower representation,

there is large variation in performance.

One of the hopes for MLS-CC is that it would improve performance on rare cell types. For logistic

regression (middle), the MLS-CC version appears to have more positive scores (i.e., CL version performs

better than the base model), especially for cell types with lower representation. This does not appear to be

the case for the other two models (left and right), where relative performance is more negative for smaller

cell-types. This indicates that when MLS-CC is applied directly to the gene expression profiles, it can learn

representations that enable classification of rare cell types, although this does not extend to pretrained model

embeddings.

5.5 MLS Embeddings

In Figure 7, we present visualizations of the latent space embeddings for three cell-types. Each plot cor-

responds to all z(k) ∈ R2 for cell k in the MLS-CC model applied directly to the gene expression vectors.

The embeddings correspond to three different qualities of representation. In the Vein Endothelial Cell plot

(left) the red points, which represent Vein Endothelial cells, are well separated from the blue points, which

18



represent all the other cell types. Due to the separation of cells by cell-type, we expect the classification

component to be able to easily distinguish Vein Endothelial cells by looking at this latent space. The second

plot (middle), shows the Keratinocyte latent space, which has slightly worse representations. This is because,

although the red points are relatively well separated from the blues, they are not as far apart as they could

be, and the red class is fairly spread out. The Cardiocyte representations (right) appear to be the worst.

The red points are spread out all over the circle and overlap with many blue points. When the classification

component is applied to these representations, it will be difficult to discern the Cardiocyte cells from the

other cell types.

Table 1: Model performance in Simple (left), Data Scarce (middle), and Unbalanced settings in terms of
top-1 and top-3 classification accuracies (Top-1 and Top-3) and macro F1 score (F1) for each model and
CL type combination. LR stands for logistic regression, and the “+MLS/MLP” indicates the model was
augmented with its respective contrastive component. The best performance for each metric in the given
setting is bolded.

Top-1 Top-3 F1

ACTINN 91.54 97.88 91.46
LR 91.88 99.19 91.83
scDAE 92.77 98.71 92.72
ACTINN+MLP 91.14 97.11 91.05
LR+MLP 92.88 99.30 92.84
scDAE+MLP 92.60 98.54 92.52
ACTINN+MLS 91.95 98.72 91.93
LR+MLS 93.60 99.42 93.56
scDAE+MLS 92.48 98.63 92.40

(a) Simple

Top-1 Top-3 F1

62.85 77.61 57.71
81.88 95.70 81.48
88.48 97.32 88.03
38.34 59.07 31.01
81.89 95.48 81.35
87.87 96.39 87.50
44.31 64.58 37.47
88.55 97.79 88.23
87.90 96.85 87.49

(b) Data Scarce

Top-1 Top-3 F1

91.74 98.64 81.65
92.85 99.35 86.33
92.38 98.68 86.60
91.11 98.26 78.86
92.67 99.15 84.45
92.21 97.93 86.15
91.35 98.24 78.79
93.03 99.26 86.90
92.22 97.96 86.33

(c) Unbalanced

102 103

Cell Count

0.4

0.2

0.0

0.2

0.4

Di
ffe

re
nc

e

ACTINN

102 103

Cell Count

Logistic Regression

102 103

Cell Count

scDAE

Figure 6: The difference in AUPRC for the MLS version of the base model and the vanilla base model for
each cell type. The x-axis shows the number of samples that particular cell type has in the training dataset.
A positive difference along the y-axis indicates that the MLS version was better at classifying that cell type
than its base.

19



Neural cell
Leukocyte
Kidney cell
Epithelial cell
Other

CardiocyteKeratinocyteVein Endothelial Cell

Good Average Poor

Positive
Negative

Figure 7: Logistic regression with MLS-CC embeddings for three cell types. Each point is the 2-dimensional
embedding of a cell in the Unbalanced test set. The red points are embeddings of cells that are of that cell
type, and the blue points are emebddings of cells that are not of that cell type. All are shown projected
onto the unit hypersphere, which is traced in gray.

20



6 Discussion

In this work, we developed a model-agnostic component that uses contrastive learning to create internal

model representations with the goal of improving single-cell classification. We found that MLS-CC was more

successful at increasing classification performance than MLP-CC, but that neither contrastive component

improved performance across all models. However, we also found that our MLS contrastive component

improved the performance of logistic regression and it was the best model combination that we tested.

Logistic Regression with MLS-CC achieved the highest top-1 accuracy and macro F1 score. The MLS-CC

component also significantly increased the average AUPRC over the base model, especially for rare cell types

with a paired t-test p-value of 0.0115. This indicates that the MLS formulation of contrastive learning is a

promising way of representing raw gene expression data, although this does not extend to pretrained model

embeddings.

6.1 Future Work

Although our results indicate that the contrastive components do not boost model performance universally,

there are several directions for future work that we think are worth pursing.

First, we would like to evaluate more datasets and models. Our initial hypothesis was that MLS-CC is a

model-agnostic method for improving internal model representations. However, we only evaluated on three

models and one dataset due to time constraints. To draw further conclusions about what our method does

well and where it fails, we must experiment with more base models and datasets.

Second, we would like to incorporate domain knowledge into the representation learning or classification

stages of our model. We took initial steps in this direction by creating a classification component (to replace

the base model’s) that would work on top of the MLS-CC representations. The classifier would make a

probability prediction for whether the cell belonged to each MLS latent space, and the probabilities would

be propogated along a graphical model representing the Cell Ontology. Unfortunately, we did not have time

to fully investigate this classifier in this work, but it shows potential.

Third, we would like to include biologically inspired data augmentations in the contrastive learning

component. One of the reasons contrastive learning is so successful in NLP and CV is because it is easy

to define transformations of the original input that don’t change our human-level understanding of the

input (e.g., blurring an image of a dog). By defining the original and transformed inputs as positive pairs,

contrastive learning models can learn that these transformations don’t affect the meaning of the image or

text. In biology, it is not obvious how to define such transformations because we do not have as intuitive of

an understanding of the data. For instance, applying blur to a gene expression vector might result in a profile

21



that represents a completely different cell type. Once we gain a better understanding of how genes work

together to produce cells with particular functions, we can define transformations that make our classifiers

more aware of representation invariance.

By further incorporating experimental settings, domain knowledge, and biology-inspired data augmenta-

tions, we believe that we could build upon the contrastive component presented in this work to improve its

accuracy, robustness, and sensitivity to rare cell types.

22



References

[1] V. Kiselev and S. Bell, “Introduction to single-cell rna-seq,” Oct 2019.

[2] T. T. M. Consortium, C. Ezran, S. Liu, S. Chang, J. Ming, O. Botvinnik, L. Penland, A. Tarashansky,

A. de Morree, K. J. Travaglini, K. Hasegawa, H. Sin, R. Sit, J. Okamoto, R. Sinha, Y. Zhang, C. J.

Karanewsky, J. L. Pendleton, M. Morri, M. Perret, F. Aujard, L. Stryer, S. Artandi, M. Fuller, I. L.

Weissman, T. A. Rando, J. E. Ferrell, B. Wang, I. De Vlaminck, C. Yang, K. M. Casey, M. A. Albertelli,

A. O. Pisco, J. Karkanias, N. Neff, A. Wu, S. R. Quake, and M. A. Krasnow, “Tabula microcebus: A

transcriptomic cell atlas of mouse lemur, an emerging primate model organism,” bioRxiv, 2021.

[3] D. Lähnemann, J. Köster, E. Szczurek, D. J. McCarthy, S. C. Hicks, M. D. Robinson, C. A. Vallejos,

K. R. Campbell, N. Beerenwinkel, A. Mahfouz, et al., “Eleven grand challenges in single-cell data

science,” Genome biology, vol. 21, no. 1, pp. 1–35, 2020.

[4] F. Ma and M. Pellegrini, “ACTINN: automated identification of cell types in single cell RNA sequencing,”

Bioinformatics, vol. 36, pp. 533–538, 2020.

[5] J. Choi, “Cell subtype classification via representation learning based on a denoising autoencoder for

single-cell rna sequencing,” IEEE, 2021.

[6] D. M. Ciortan M., “Contrastive self-supervised clustering of scRNA-seq data,” BMC Bioinformatics,

vol. 22, p. 280, 2021.

[7] T. Abdelaal, L. Michielsen, D. Cats, D. Hoogduin, H. Mei, M. Reinders, and A. Mahfouz, “A comparison

of automatic cell identification methods for single-cell rna sequencing data.,” Genome Biology, vol. 20,

2019.

[8] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for unsupervised visual

representation learning,” CoRR, vol. abs/1911.05722, 2019.

[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of

visual representations,” in Proceedings of the 37th International Conference on Machine Learning (H. D.

III and A. Singh, eds.), vol. 119 of Proceedings of Machine Learning Research, pp. 1597–1607, PMLR,

13–18 Jul 2020.

[10] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,”

CoRR, vol. abs/1807.03748, 2018.



[11] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan,

“Supervised contrastive learning,” CoRR, vol. abs/2004.11362, 2020.

[12] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual

features by contrasting cluster assignments,” CoRR, vol. abs/2006.09882, 2020.

[13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,

J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from natural language

supervision,” CoRR, vol. abs/2103.00020, 2021.

[14] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers

for language understanding,” CoRR, vol. abs/1810.04805, 2018.

[15] Y. Zhang, R. He, Z. Liu, K. H. Lim, and L. Bing, “An unsupervised sentence embedding method

bymutual information maximization,” CoRR, vol. abs/2009.12061, 2020.

[16] L. Logeswaran and H. Lee, “An efficient framework for learning sentence representations,” CoRR,

vol. abs/1803.02893, 2018.

[17] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, and E. Grave, “Towards unsu-

pervised dense information retrieval with contrastive learning,” CoRR, vol. abs/2112.09118, 2021.

[18] L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk, “Approximate

nearest neighbor negative contrastive learning for dense text retrieval,” in International Conference on

Learning Representations (ICLR), April 2021.

[19] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Re-

search, vol. 9, pp. 2579–2605, 2008.

[20] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and projection for

dimension reduction,” 2018. cite arxiv:1802.03426Comment: Reference implementation available at

http://github.com/lmcinnes/umap.

[21] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with application

to face verification,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), vol. 1, pp. 539–546 vol. 1, 2005.

[22] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and

clustering,” CoRR, vol. abs/1503.03832, 2015.



[23] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in Advances in Neural

Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.),

vol. 29, Curran Associates, Inc., 2016.

[24] S. Namura, “Single-cell genomics to understand disease pathogenesis,” Nature Journal of Human Ge-

netics, vol. 66, pp. 75–84, 2020.

[25] R. A. . Y. N. Wagner A., “Revealing the vectors of cellular identity with single-cell genomics,” Nature

Biotechnology, vol. 34, p. 1145–1160, 2016.

[26] A. Kolodziejczyk, J. Kim, J. Tsang, T. Ilicic, J. Henriksson, K. Natarajan, A. Tuck, X. Gao, M. Bühler,

P. Liu, J. Marioni, and S. Teichmann, “Single cell rna-sequencing of pluripotent states unlocks modular

transcriptional variation,” Cell Stem Cell, vol. 17, no. 4, pp. 471–485, 2015.

[27] F. Tang, C. Barbacioru, and Y. Wang, “mRNA-Seq whole-transcriptome analysis of a single cell.,”

Nature Methods, vol. 6, pp. 377–382, 2009.

[28] M. D. Luecken and F. J. Theis, “Current best practices in single-cell rna-seq analysis: a tutorial,”

Molecular Systems Biology, vol. 15, no. 6, p. e8746, 2019.

[29] J. H. Alquicira-Hernandez J., Sathe A., “scPred: accurate supervised method for cell-type classification

from single-cell rna-seq data,” Genome Biology, vol. 20, p. 264, 2019.

[30] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, (New

York, NY, USA), pp. 785–794, ACM, 2016.

[31] S. T. Lieberman Y, Rokach L, “Castle–classification of single cells by transfer learning: Harnessing the

power of publicly available single cell rna sequencing experiments to annotate new experiments.,” PLoS

ONE, vol. 13, 2018.

[32] “Method of the year 2013.,” Nature Methods, vol. 11, p. 1, 2014.

[33] L. Weng, “Contrastive representation learning,” lilianweng.github.io, 2021.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and

phrases and their compositionality,” in Advances in Neural Information Processing Systems (C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds.), vol. 26, Curran Associates, Inc., 2013.



[35] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple

way to prevent neural networks from overfitting.,” Journal of Machine Learning Research, vol. 15, no. 1,

pp. 1929–1958, 2014.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” CoRR, vol. abs/1502.03167, 2015.


	Abstract
	Acknowledgments
	Introduction
	Background
	Representation Learning
	Single Cell Data
	Acquiring the Data
	Data Details
	Takeaways

	Single Cell Type Classification

	Related Works
	Deep Learning in Single Cell Classification
	ACTINN
	scDAE

	Supervised Contrastive Learning

	Model
	Problem Statement
	Details of our Approach

	Experiments
	Datasets
	Experimental Procedure
	Overall Results
	Per Cell-Type Results
	MLS Embeddings

	Discussion
	Future Work

	References

